martes, 4 de agosto de 2009

Principio de Arquímides

El principio de Arquímedes es un principio físico que afirma que un cuerpo total o parcialmente sumergido en un fluido estático, será empujado con una fuerza ascendente igual al peso del volumen de fluido desplazado por dicho objeto. De este modo, cuando un cuerpo está sumergido en el fluido se genera un hidrostático resultante de las presiones sobre la superficie del cuerpo, que actúa siempre hacia arriba a través del centro de gravedad del cuerpo del fluido desplazado y de valor igual al peso del fluido desplazado. Esta fuerza se mide en Newtons (en el SI) y su ecuación se describe como:



Donde ρf es la densidad del fluido, V el volumen del cuerpo sumergido y g la aceleración de la gravedad.

Historia La anécdota más conocida sobre Arquímedes, matemático griego, cuenta cómo inventó un método para determinar el volumen de un objeto con una forma irregular. De acuerdo a Vitruvio, arquitecto de la antigua Roma, una nueva corona con forma de corona triunfal había sido fabricada para Hierón II, tirano gobernador de Siracusa, el cual le pidió a Arquímedes determinar si la corona estaba hecha de oro sólido o si un orfebre deshonesto le había agregado plata.[1] Arquímedes tenía que resolver el problema sin dañar la corona, así que no podía fundirla y convertirla en un cuerpo regular para calcular su densidad.

Mientras tomaba un baño, notó que el nivel de agua subía en la tina cuando entraba, y así se dio cuenta de que ese efecto podría usarse para determinar el volumen de la corona. Debido a que el agua no se puede comprimir,[2] la corona, al ser sumergida, desplazaría una cantidad de agua igual a su propio volumen. Al dividir el peso de la corona por el volumen de agua desplazada, se podría obtener la densidad de la corona. La densidad de la corona sería menor si otros metales más baratos y menos densos le hubieran sido añadidos. Entonces, Arquímedes salió corriendo desnudo por las calles, tan emocionado estaba por su descubrimiento para recordar vestirse, gritando "¡Eureka!" (en griego antiguo: "εὕρηκα!," que significa "¡Lo he encontrado!)

La historia de la corona dorada no aparece en los trabajos conocidos de Arquímedes, pero en su tratado Sobre los cuerpos flotantes él da el principio de hidrostática conocido como el principio de Arquímedes. Este plantea que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al volumen de fluido desalojado.

miércoles, 4 de marzo de 2009

Proyecto: Tensión Superficial y Crisis Económica.




Materiales:

*Un recipiente con agua
*jabón
*polvos de talco
*pimienta molida
*unos palillos de madera y unos alfileres.

Pretendemos estudiar los efectos que provoca el jabón en la superficie del agua. Para ello podemos:

Esparcir polvos de talco en la superficie de agua.
Esparcir pimienta molida.
Colocar unos alfileres flotando en la superficie del agua.

Si tocamos la superficie del agua con un palillo de madera mojado en jabón vemos que se rompe la tensión superficial. Los polvos de talco y la pimienta se alejan del lugar donde introducimos el palillo de madera y los alfileres se hunden.

¿Qué es lo que ocurre?

La tensión superficial se debe a las fuerzas intermoleculares y produce que la superficie del agua se comporte como si fuera una delgada película elástica. Esto permite que unos alfileres de acero puedan flotar en el agua. Al romperse la tensión superficie los alfileres acero, más densos que el agua, se hunden.

¿Qué tiene que ver la tensión superficial con la crisis económica?

Aquí tenemos la respuesta.

ALGUNOS CONCEPTOS MUY BUENOS!



Tensión Superficial:

En física se denomina tensión superficial al fenómeno por el cual la superficie de un líquido tiende a comportarse como si fuera una delgada película elástica. Este efecto permite a algunos insectos, como el zapatero (Hydrometra stagnorum) , desplazarse por la superficie del agua sin hundirse. La tensión superficial (una manifestación de las fuerzas intermoleculares en los líquidos), junto a las fuerzas que se dan entre los líquidos y las superficies sólidas que entran en contacto con ellos, da lugar a la capilaridad, por ejemplo.

A nivel microscópico, la tensión superficial se debe a que las fuerzas que afectan a cada molécula son diferentes en el interior del líquido y en la superficie. Así, en el seno de un líquido cada molécula está sometida a fuerzas de atracción que en promedio se anulan. Esto permite que la molécula tenga una energía bastante baja. Sin embargo, en la superficie hay una fuerza neta hacia el interior del líquido. Rigurosamente, si en el exterior del líquido se tiene un gas, existirá una mínima fuerza atractiva hacia el exterior, aunque en la realidad esta fuerza es despreciable debido a la gran diferencia de densidades entre el líquido y el gas.

La tensión superficial tiene como principal efecto la tendencia del líquido a disminuir en lo posible su superficie para un volumen dado, de aquí que un líquido en ausencia de gravedad adopte la forma esférica, que es la que tiene menor relación área/volumen.

Energéticamente, las moléculas situadas en la superficie tiene una mayor energía promedio que las situadas en el interior, por lo tanto la tendencia del sistema será a disminuir la energía total, y ello se logra disminuyendo el número de moléculas situadas en la superficie, de ahí la reducción de área hasta el mínimo posible.

Fuerza Intermolécular:



La cohesión es distinta de la adhesión; la cohesión es la fuerza de atracción entre partículas adyacentes dentro de un mismo cuerpo, mientras que la adhesión es la interacción entre las superficies de distintos cuerpos.

En los gases, la fuerza de cohesión puede observarse en su licuefacción, que tiene lugar al comprimir una serie de moléculas y producirse fuerzas de atracción suficientemente altas para proporcionar una estructura líquida.

En los líquidos, la cohesión se refleja en la tensión superficial, causada por una fuerza no equilibrada hacia el interior del líquido que actúa sobre las moléculas superficiales, y también en la transformación de un líquido en sólido cuando las moléculas se comprimen lo suficiente.

En los sólidos, la cohesión depende de cómo estén distribuidos los átomos, las moléculas y los iones, lo que a su vez depende del estado de equilibrio o desequilibrio de las partículas atómicas. Muchos compuestos orgánicos, por ejemplo, forman cristales moleculares, en los que los átomos están fuertemente unidos dentro de las moléculas, pero éstas se encuentran poco unidas entre sí.


Foto histórica: Los grandes de la fisica en blanco y negro.

Así es, decidimos subir una foto muy valiosa para los amantes de la física, se trata de la quinta Conferencia de Solvay en 1927, dónde se reunieron 17 premios Nobel en Bruselas. El fotógrafo francés Benjamin Couprie estuvo allí para tomar una instantánea de esas mentes privilegiadas que jamás volverían a estar todas juntas. Allí en esa fotografía se ven a los cerebros más importantes de la historia de la química y la física.

El filántropo Ernest Solvay utilizó parte de su fortuna para reunir a las mentes más despiertas del momento, pero la reunión más famosa fue la de octubre de 1927, a la que asistieron los padres de la físca cuántica y otros cerebros máximos de diversos campos de la ciencia. Se reunieron en torno a la temática de “Electrones y fotones”.

Se cuenta que en ese encuentro Einstein y Bohr discutieron sobre el principio de incertidumbre de Heisenberg, y Einstein realizó su famosa objeción: “Dios no juega a los dados”, a lo que Bohr respondió, “Einstein, deja de decirle a Dios lo que debe hacer”.

Allí se pueden ver a Pauli, Schrödinger, Einstein, Dirac, Marie Curie, Bohr, Planck, Lorentz y Heisenberg.


Primera fila: A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder, E. Schrödinger, E. Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin.

Segunda fila: P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M. Born, N. Bohr.

Tercera fila: I. Langmuir, M. Planck, M. Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye, C.T.R. Wilson, O.W. Richardson


(Dar clic en la imágen para observar su tamaño real)
¡Qué la disfruten!

¿Qué es un experimento?




Es un procedimiento mediante el cual se trata de comprobar (confirmar o verificar) una o varias hipótesis relacionadas con un determinado fenómeno, mediante la manipulación de la/s variables que presumiblemente son su causa.

La experimentación constituye uno de los elementos claves del método científico y es fundamental para ofrecer explicaciones causales.

En un experimento se consideran todas las variables relevantes que intervienen en el fenómeno, mediante la manipulación de las que presumiblemente son su causa, el control de las variables extrañas y la aleatorización de las restantes. Estos procedimientos pueden variar mucho según las disciplinas (no es igual en Física que en Psicología, por ejemplo), pero persiguen el mismo objetivo: excluir explicaciones alternativas (diferentes a la variable manipulada) en la explicación de los resultados. Este aspecto se conoce como validez interna del experimento, la cual aumenta cuando el experimento es replicado por otros investigadores y se obtienen los mismos resultados. Cada repetición del experimento se llama prueba o ensayo.

La Física.




La física, es la ciencia que se ocupa de los componentes fundamentales del Universo, de las fuerzas que éstos ejercen entre sí y de los efectos de dichas fuerzas. En ocasiones la física moderna incorpora elementos de los tres aspectos mencionados, como ocurre con las leyes de simetría y conservación de la energía, el momento, la carga o la paridad.

La física está estrechamente relacionada con las demás ciencias naturales, y en cierto modo las engloba a todas. La química, por ejemplo, se ocupa de la interacción de los átomos para formar moléculas; gran parte de la geología moderna es en esencia un estudio de la física de la Tierra y se conoce como geofísica; la astronomía trata de la física de las estrellas y del espacio exterior. Incluso los sistemas vivos están constituidos por partículas fundamentales que siguen el mismo tipo de leyes que las partículas más sencillas estudiadas tradicionalmente por los físicos.
El hincapié que la física moderna hace en la interacción entre partículas (el llamado planteamiento microscópico) necesita muchas veces como complemento un enfoque macroscópico que se ocupe de elementos o sistemas de partículas más extensos.




Este planteamiento macroscópico es indispensable en la aplicación de la física a numerosas tecnologías modernas. Por ejemplo, la termodinámica, una rama de la física desarrollada durante el siglo XIX, se ocupa de determinar y cuantificar las propiedades de un sistema en su conjunto, y resulta útil en otros campos de la física; también constituye la base de las ingenierías química y mecánica. Propiedades como la temperatura, la presión o el volumen de un gas carecen de sentido para un átomo o molécula individual: estos conceptos termodinámicos sólo pueden aplicarse directamente a un sistema muy grande de estas partículas. No obstante, hay un nexo entre los enfoques microscópico y macroscópico: otra rama de la física, conocida como mecánica estadística, explica la forma de relacionar desde un punto de vista estadístico la presión y la temperatura con el movimiento de los átomos y las moléculas.

Historia Breve de la Física.



Se conoce que la mayoría de civilizaciones de la antigüedad trataron desde un principio de explicar el funcionamiento de su entorno, miraban las estrellas y pensaban como ellas podían regir su mundo. Esto llevo a muchas interpretaciones de carácter mas filosófico que físico, no en vano en esos momentos la física se la llamaba filosofía natural. Muchos filósofos se encuentran en el desarrollo primigenio de la física, como Aristóteles, Tales de Mileto o Demócrito, por ser los primeros en tratar de buscar algún tipo de explicación a los fenómenos que los rodeaban.[1] A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas, éstas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la iglesia católica de varios de sus preceptos como la teoría geocéntrica o las tesis de Aristóteles.

Esta etapa denominada oscurantismo en la ciencia termina cuando Nicolás Copérnico, considerado padre de la astronomía moderna, en 1543 recibe la primera copia de su De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo XVI cambiaría la historia de la ciencia empleando por primera vez experimentos para comprobar sus aseveraciones, Galileo Galilei. Con la invención del telescopio y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. A sus trabajos se le unieron grandes contribuciones por parte de otros científicos como Johannes Kepler, Blaise Pascal, Christian Huygens.

Posteriormente, en el siglo XVII, un científico inglés reúne las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la tierra en lo que el llamó gravedad. En 1687, Sir Isaac Newton en su obra Philosophiae Naturalis Principia Mathematica formuló los tres principios del movimiento y una cuarta Ley de la gravitación universal que transformaron por completo el mundo físico, todos los fenómenos podían ser vistos de una manera mecánica.
Dios no juega a los dados.
Albert Einstein.
Einstein, deje de decirle a Dios lo que tiene que hacer con sus dados.
Niels Bohr.

El trabajo de Newton en el campo, perdura hasta la actualidad; todos los fenómenos macroscópicos pueden ser descritos de acuerdo a sus tres leyes. De ahí que durante el resto de ese siglo y el posterior siglo XVIII, todas las investigaciones se basaron en sus ideas. De ahí que otras disciplinas se desarrollaron, como la termodinámica, la óptica, la mecánica de fluidos y la mecánica estadística. Los conocidos trabajos de Daniel Bernoulli, Robert Boyle, Robert Hooke entre otros, pertenecen a esta época.

Es en el siglo XIX donde se producen avances fundamentales en la electricidad y el magnetismo principalmente de la mano de Charles-Augustin de Coulomb, Luigi Galvani, Michael Faraday y Georg Simon Ohm que culminaron en el trabajo de James Clerk Maxwell de 1855 que logró la unificación de ambas ramas en el llamado electromagnetismo. Además se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897.